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Abstract

Process analysis and related approaches to the study of energy economics h~tvemade extensive use of Shephard’s lemma as well as other aspects of the Shepherd—
Samuelson transformation theories. A major problem is shown to be present in the
use of these transforms to go from cost functions to production possibility sets
L~ that the latter viii always be unbounded above. Capacity conditions which are
especially important in energy policy studies, are therefore not adequately ad—
greased. Troubles also occur in the use of translog approximations because of the
functional forms which can result when the Shephard—Samuelson transformations are
employed. Nondifferentiability is not the primary difficulty with the translog
approztmations as ii shown with an infinitely differentiable function. Relations
between other parts of mathematical transform theory, e.g., as exhibited in Laplace
transforms, are also indicated along with possible extensions that might be made
in the Shephard—Samueison “duality” theories.
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1. Background

The concept of a production function —— as veil as most other concepts in
micro—theory —— involves an optimizing principle which implies the presence of

zero “waste.” This is a situation in which no output can be increased at zero cost.

The costs to be considered are real costs, of course, which means that waste is

present when some output can be obtained without augmenting any input or, con-

versely, when the already attained outputs can be secured with a release of at

least same inputs.

Allowance needs to be made for possible departures from these production

function concepts , when , as in the case of energy , large price increases occur

over relatively short time periods. Important issues that require attention may

otherwise be concealed from view and related parts of micro theory may not be pro-

perly applied )’

1’
~
’
See the discussion in [1] concerning waste , chance and mistakes in managerial judg-
ment .

Two routes for effecting such allowances may be outlined as follows:

One might determine whether subsets of firms, or other decision—making unita~’,

have already effected adjustments to a new frontier. As described in [4], one could then

2/
— E.g., not—for—profit organizations.

use the observations from this subset to estimate the amount of waste before ef-

fecting adjustments to obtain the production frontiers for the remaining entitites ,

or at least those entities engaged in “similar” activities.~~

firms using the same inputs and outputs, See [6]

—— -~ ----—------ - ----~—-- - -- —~-~~
-
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Alternatively, one might impute some parts of these differences to time—

dependent adjustment paths being followed by different firma. For this, one

would need explicitly formulated models of production behavior along with opti—

aizing principles for establishing the relevant time paths of adjustment.

Then one could again determine the amounts of waste and other types of adjust-

ment that would be required to reach a new equilibrium, and so on. See [ 4
These are not the only possibilities. In a recent issue of this journal,

for instance, J. M Griffin has combined a ‘process analysis~model1~
’ with an

1/ This term derives from the title of the work by Markewitz and Manne in [13]

econometric approach to estimate elasticities and related economic magnitudes in

a study of electric power generation.V Us ing “engineering” data from a variety

VSee [10 1

of sources Griffin uses this process analysis approach to generate long—run

cost—minimizing inputs corresponding to alternative relative price vectors.

This results in a set of “pseudo data.”~’ Via the indicated minimization a

1’
~This term is credited to L. R. Klein, on p. 113 of [10 

]

series of points are obtained on a well defined production surface and these

in turn are used to estimate a translog cost function. Extensive use of

Shephard’s lemma and like devices from mathematical ecomics are

-----
~~~ ---—--~~~ -~~~~~ —. ~~~~~~~~~ 
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emp 1oyed.~~ and , because the analysis  is long—run , it Is assumed tha t optima l

V See Shephard ( 15) and (j
~ I and also Samuelson [j4].

capacity configurations are selected .—

~~Gr iffjn [ 10 ) p. 114.

Griffin ’s approach has considerable appeal in its own right and it also
relates to other  studies which have also made extensive use of these same kind
of capacity assumptions and Shephard—Samuelson duality relations en route to

effecting translog approximations to the wanted cost and/or production sur-

faces.!’ It is therefore important to 
~explicit1y consider possible diffi—

e.g., E. A. Hudson and D. W.. Jorgenson [11).

culties that can arise from som e of the underlying assumptions in these ap-

proaches.

To bring one of  these assumptions into view we quote from Shepherd [16],

p. 14 as follows :

$o limitations will, be put upon the available anounts ofth. f.~ tors of produc tion, because this implies reference to somepart~cu1ar production i~nit which confounds the notion of aproduction func t ion with some implicit eco~onic decisions orproduction plan, the variaty of which is unl imited , preventing aelsar, unambiguous and generally appli cabl, d*fL~ ition of the -

Production function. ”

•1

_ _ 
_ _  
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In other words , an absence of capac i ty  l imi ta t ions  on all of the relevant in-

puts is assumed so that , at a minimum , one ought to explore the consequence of

relaxing this assumption .

Similarly strong assumptions are made about price—quantity interactions for,

as Shephard also notes,

“Throughout all of these duality theories..., the single most important as-
sumption made limiting their usefulness is that prices ... for input and out-
put vectors are independent of their magnitudes...

!‘The quotation refers to the duality theories that are discussed in the refer-

ences under 112].

Hopefully one might relax these very severe assumptions since capaci ty problems occupy

positions of cent ra l  importanc e in many aspects of energy planning and should therefore

not be assumed away or concealed from view. As we shall see, however , the intro-

duction of capacity constraints causes difficulties and may conceal important

capacity l i m i t s  (known to be present)  when transforming from production to cost

analytic approaches. These limitations can also cause approximation difficulties

even for functions with the assumed generality of translog functions. Indeed , as

we shall see, when the parameters of such a function are adjusted to provide a

good approximation in one region then , under the circumstances we shall be consid-

ering, they necessarily yield a bad approximation in other regions .

In the above demonstration of these approximation dif f icul t ies  we shall use the

same quadratic formulations as Griffin.~~
’ However, we also want to correct an ia-

VHudson...Jorgenson Ill), and most other users of the translog func tion, also use
quadratic approximations.

k
~~~ - - - .  ~~~~~~~ 

- 
L ~~~~
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pr’.ssion that th. addition of a sufficient number of terma to a translog represen—

tattom will yield a good fit to any differintiable production (or cost) function.

P~mctiona which are infinitely differentiable but which cannot be represented in a

trasslog approximation may be needed to resolv. some of the problems we shall be

considering. Hence w shall provide an example of this kind of function. Then we

shall conclude by trying to point up what our analysis has shown and also indicate

possible lines of research that might be followed to resolve these shortcomings

without retreating from advances that have been made in energy modeling and analysis.

4
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.~~. Trans for m Rt , l at i ons

We can ob ta in  c l a r i f i c a t i o n  on whe t is involved if we f i r s t  turn to oth-

er par ts  of m a themat i cs  where s imi lar  d i f ~~icu 1 tj e s  are known to occur .  For

this we turn to transform theor (e.g., Fourier  and Laplace transfo r ms ) as

found in engineering and physics.

For reasons of simplicity let us consider only the Laplace

transform. First we recall that the Laplace transform F(p) of f(t) is

given by

(1) F( p ) • e~~
t 
f(t) dt

for suitable classes of functions .1’ There also exist various inversion

transforms yielding f(t) from F(p), e.g.,-~
”

(2) f ( t) -

~

-

~~

-

~~ 
I’ ~~~~~ F(p) dp.
c-i~

For cost and production theory there are the elegant relations,

which we here propose to refer to as “Shepherd transforms,” ~~~~~ as follows

(3) C(y,p) — m m .  pTx for {x: ’f(y,x)~ l}

and

• (4) ? (y, x) — a m .  for {p:C(y,pThl}.

Cf, e.g., D. V. Widder [18).

Again cf. Widder [38] for details.

—~~ Cf. Fsnchel [~] for geometric charac terizations of this type of transform
which might also be called “Sh.phard-’Samuelson” transforms in view of their
virtual simultaneous publication in [3 4)  and [15) .

— ---- -~~
.---- ,‘---- — ~. — — —--- - -~~~
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Herein the set {z:Y (y,x)~l) is the production possibility set;~’ i.e., it is

an alternat ive characterization of the point—to—set produc t ion correspondence

y —‘ L(y) between the output vector y and the set L(y) {x: at least the

output vector y is produced ). This set is required to be non—empty and

convex and, indeed, to be a cone, possibly truncated below, so that the

components of the input vector x~O are always available in the requisite

amounts for any y~O that may be stipulated. Similar remarks apply to the

price vector p which, in transposed form, is used to generate the cost

function C(y p) specified in (3) as well as the “distance function”

Y(y ,x) specified in (4).

Equivalently we can obtain C(y,p) from the characterization

(5) C(y,p) — m m .  for xtL(y).

In pseudo—data methods, as in f 10], however, we directly determine C(y,p) by

estimating parameters in a posited functional form.

Clearly, the relationships between C(y,p) and V (y,x), as exhibited above,

are similar to those of f(t) and F(p). One is the transform of the other in

each pair. Moreover, with either of these pairs one may start with one of the

functions to obtain the other. Each pair is related by the indicated operator.

• Integration is the operation which effects the transformations in the Laplace pair

and R(nt~ization is the operator for the Shepherd pair . Finally, under suitable

conditions there is a bi—unique correspond ence between the function and its transf orm

Lu each pair.

are here conforming to the notation of Diewert et al. as in [12) .

a/ See Diewert [12.1] .

t



One of the well ~~own rela tions , so—called “Tauberian Theorems.” cf. [18],

p. 192, Theorem 4 .3, between F(p) and f(t) implies tha t if F(p) p ” , v>O as

p —. then t~
’
~~

1 / r(v) is asymptct •c to f ( t )  as t —, 0. Thus if F(p) is

asymptotic to F(p) in a neighborhood of ~~~, it can generate an f ( t) also asymptotic to

f(t) as t — 0. However, the inverse transform of F(p) may be nowhere close to f ( t)

for t substantially different from zero, and , a fortiori, there is no reason why

1(p) need be close to F(p) away from the region of p —

For example, f(t) — {sin 

~: 
~~~ has Laplace transform F(p) — (p2+1) 1

• ~~_1)fl+l~—2fl~ Thus, F(p)~ ~~
2—p~~ (approximates) is asymptotic to F(p) at p — (to

the second order). Since r(2) — 1, f(t) — t — t
3/(3!) which is asymptotic to sin t

as t —. 0. Clearly, f(t) is nothing like sin t elsewhere, and this behavior provides

a clue to the likely existence of similar phenomena with the Shephard transforms. I-n

• other words, the fact of a good approximation in one region need not imply that the fit

is good in other regions as well.

A Process Analysis Example

We now proceed to investigate such possiblities by means of linear program-

ming formulations of “process analysis” models. First we note that a system so re-

presented need not have constant returns to scale since, e.g., one may be employing

piecewise linear convex functions in the constraints and functiona1si~’ Further , in

such a formulation the input price may well vary with the level of the associated ~c—

tivities. Still further, the linear program may be employed algorithmically, e.g., as

in integer programming, to solve qu ite arbitrary nonlinear problemsA-” Hence an approach
• via process analysis need not be limited by the assumption of constant returns to scale,

as Griffin asst~~ s, but there are problems associated with the use of the Shephard—Samuel-

transforms an~ other aspects of the analysis that Griffin (like Hudson & Jorgenson 111]) employs.
i/See , e.g., [3] • - • -

2/See the discussion of “algorithmic completion of a model” in [3].

• 
• •

~~~~~~~~~~~ -— • 
- 

~~~~~~~~ 
••
~~~~~



9

As we have al ready obser ved , it is assumed in the Shepherd

transforms (between production func t ions and cost functions) that the

• input prices are constant and independent of the input quantities. This

limitation of scope is similar to one also encountered in Laplace transtorm

usage-a. For instance , the latter are useful for dealing with linear differ-

ential. equations with constant coeff icients  even to the extent of providing

a. general theory and approach to the solution of such equa t ions. Other ,

more rscondite, types of differential equations generally have no such

tr~~n~~fo~ m theory for their treatment.

Models , including process models, which try to reflect  real

aspects of the energy problem will generally involve restrictions such

that not all y are possible. The set L(y) may be empty for some output

vectors y. Some input vectors may also be limited by capacities or other

• stipulations. While it may be possible formally to attribute infinite

values to the cost function for unattainable y and, correspondingly, to

attribute infinite values for Shephard’s ~(y,x) for unattainable values

of x — see coannerits in our concluding section —— no one seems to have dealt

expUcit..ly with the discontinuities involved. It should be clear, however,

that ~~~oth, regular “everywhere defined” functions must fail to provide ade-

quate approximations in many cases of great importance.

In order to make the preceding considerations more concrete we

m~~ proceed by means of a very simple example involving only one output

~~.d b~ inputs. Thus, let

(6) L(y) — {(x1,x2): x1+x2ly; x1ml; x1,x2�0).



1 0-

• The set L(y) is shown in the following Figure.1~ The horizontal

shadings represent L(y) for y>l. The vertical shadings represent L(y) for

y~l. Notice that in both cases there are only two “cost efficient” extreme

points in the set. Thus in the determination of C(y,p) — min.pTx, xct(y) ,

where y.~O, one or the other of the extreme points gives the minimum,

depending on the relative values of p
1 and p2, the components of p

associated with x1 and x2, respectively.

: 

_ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _ _ _ _

:j (j y—] )y-l 

~~~~~~~~~~~

By virtue of what has just been said ye can represent the values of

C(y,p) in a sl.mple L wo—way table as follows:

• pl~~2 _______

y~l 
.

(7) C(y,p) : 
y>l ~~~~ 2 (~ _1) 

~2 ’

Notice that L(y) is not a truncated (below) cone.
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Note that in the general case of a polyhedral set of production

possibilities involving n input variables and m output

variables Yj  we could, in principle, construct a larger table with

one column for each “cost efficient” production possibility and with one

row for each facet in the y
~ 

for which different extreme points could

be designated . At any rate, as this example already makes clear, there

can be different functional forms for C(y,p) corresponding to the

various (y,p) possibilities.

We now develop additional tables of the same type to exhibit

some other relevant properties. For instance, taking natural logarithms

in the above table yields

lnp1+lny lnp2+lny
(8) inC : 

ln(p
1
+p2(y—l)] lnp2+lny

Next, the partial elasticities with respect to input prices are

respectively exhibited via

1 0
alnC
a1n~~ p1

4~ 2(y—l) 
0

(9)

0 ( 1

~lnC : 7—1 1
31
~~2 P1+P2(Y l)

J 
1

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

_ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—- • 

- - ________________
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• Finally, we record the efficient input demands x1*, x2*, which,
according to Shepherd’s lesina, are given by the partial derivatives

ap1 ~P2

ac 
_________________

1 0

(10)

x2*_ i ~~ : 
y-l y 

. - -~-•~• •~ ~~ --• - -~~. - - - -~~~ •--- - --~~~~~~~~~ 
d
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3. Inverse Transform s

Having obtained C(y p) and its related economic magnitudes from (3) we

now proceed to try to ob tain ‘V(y,x) by the inverse opera tions defined by (4)
which we now rewrite as

(11) r(y,x) — inf. ~~~ for p~O and C(y,p)~ 1.

b r  C(y p) as in (7) ,  this inverse operation can be formulated in terms of linear pro-

gramming problems for which we need only examine and compare the values of

• at extreme points.

For example, for y~l, x>O and p1~p2, we have from (7) that

p1y~1. Hence for a minimum p
1y”l, or p

1”l/y. Also p
1~p2 implies for a

minimum that p2—p1. Therefore, the minimum of p1x1 + p2x2 for p
1~p2 

is

given by (x
1+x2)/y. If instead p

1
>p2, this sane argument interchanges

p1 and p2 and we get the same result —— i.e., (x 1+x2)/y.  Thus for

y~l, ~(y,x) — (x
1+x2)/y no matter which price regime applies.

The reasoning becomes more involved for p1, but reduces to

considera tion of only two cases, namely,

(12) x2ix1(y—1) and xfx1(y—1) .

• Finally, we obtain for V (y,z) the piecewise representation,

x2~x1(y—lS’ xfX1(y_ l~

(x
1+x2)/y (x1+x2)Iy

(13) ~(y,x) : h
• 

x
2/(y—1) (x1+z2)/y

5Applicgbje only to cells in second row.

- 
——.

~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~~----~ ------ •-~-- •.
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It may be noted that the production possibility set for any fixed y

given by V(y, x)~ l is a truncated (below) cone in contrast to L(y), which

is not. However, the so—called efficiency frontier is the same for these

two different production possibility sets.

Thus, if the production possibility sets are derived from C(y,p)

as ((y,x): ~(y,x) ~ 1, x,y~O) they will always be truncated (below) cones

and will fail to give information about limitations of the production possi-

bility sets. Such limitations may be of critical importance for policy is-

sues —- such as are now being examined by means of this transform theory ——

in areas like energy costs, prices and substition possibilities.

The point is that  the production possibility set developed for any cost

function by the Shephard—Samuelson transforms is necessarily unbounded above.

This occurs no ma t t e r  how the cost function is developed —— by pseudo
1/data or otherwise.— Linitational possiblities on various inputs actually

Hudson—Jorgenson [Lii as well as Griffin [101 both proceed via the
cost function and hence both are comprehended in these coements despite
other differences in their approaches.

ought to be brought to the fore for explicit evaluation since they represent a central

feature of the energy problem for many types of policy decisions. Note that such limita—

tional possibilities may not be immediately apparemt since their effecta may be ex-

perienced in terms of complex interactions between the various inputs.

Hence any approach which fails to bring such possibilities to the fore is

likely to be seriously deficient as a guide to contemporary problems of en—

ergy policy.

I

— ~~~~~ .~ ~“—~~ 

- ------- ---~-----~~~~ - - — - —  ..— — —.. -——--. —•—-- — - • - - —  
~~~ -- - -- - - - - - - - - —~~
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4. Translog Representations

The above development indicates some of the difficulties in utilizing

the Shephard transforms in these process analysis approaches. Now we deli-

neate other problems that can arise when employing translog approximations

to the resulting data when input limitations are present . Thus.suppose we

approximate C(y,p) to the second order in the logarithms of p as in a trans—

log function. For simplicity of notation, we do not here bother with all of

the corresponding approximatioi~~in y since taking derivatives with respect

to p
1 

and p2 will remove the terms involving only y. Therefore , for this

translog function approximation, we write.

1n~ a10 lnp
1 + a02 lnp2 + a11 (isp1)

2

( 14) + a22 (lnp 2) 2 
+ a12 lnp1 lnp2 + a13lnp

1
lny + a23lnp

2lny

+ terms in logarithms of y.

Thus we obtain

(15) - a10 + 2a111np1 + a12lnp2 + a13lny

which we can compare to the first expession in (9) —— viz .,

~1nC~~ 
I 0

31np
1~ 

— 1
p1 + p2(y—1) 

0

_ _ _ _ _ _ _



~

lb

and

(16) - a02 + 2a22 lnp2 + a12 isp1 + a23lny

which we can compare to the second expression in (9) —— v iz . ,

0 1
3inC 1alflp2 p1+p2 (y—1)~ 1

There is no way of choosing the values of to get a good match in more than

two regions for either one of these two elasticities. E.g., suppose we

approximate by in the neighborhood of P1 P2 1 and rl~ where

lnp
1—1np2

0 and lny~0. Then for a good approximation in the neighborhood o

~1
<
~
’2 

y<l we must have a10~l. But in the neighborhood of y<i , p
1
<p
2

we need a10 0. Both values cannot be simultaneously assigned to a10. Similar

remarks apply to the other elasticity and to other neighborhoods.

Finally, we turn to the efficient inputs obtained from Shepherd’s

l~~~a for further comparisons via

- 

~~l 
- 

~~~~~ 

a m p 1 ~~~
— (a 10 + 2a11lnp1 + a121np2 + a13lny]

i.ustsad of the first expression in (10) —— i.e.,

~ 
: j

_  • _ _  

_  _
_ _ _
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Similarly, 
-

(18) 
~2* 

— ap 2 
— a m p 2 

— .
~~
_ [a02 + 2a22lnp2 + a121np1 + a23lny]

thatsad of the second expression —— i.e.,

* 
0

x2 - ___________________

y—i y

If , as befor e, we focus on approximation in the neighborhood of

• y’L, p1 p2 1 (hence lnp1 lnp2 O lny) then ~/P1~~/Pf 1. Thus

in (17) and (18) the values of a10 and a02 play the same roles as before

with analogous consequences and evidently similar conclusions as in the

preceding case again apply.

In this case the source of the difficulty in the wanted approxi-

mation is known. In other cases, and especially when statistical noise is

present , it may be concealed from view. Moreover, in longer run studies

such as those essayed by Griffin, Hudson—Jorgenson çç al., the elasticities

sud other relevant economic quantities may be wide of the mark in the future

— e.g., because of a change in relative prices —— precisely because they

represent good fits to present data (including pseudo data).

• The above very simple usmpl.s thus provid, what is wanted. These

difficulties are not matters which can be handled by simply adding terms as

• in a power series repr.s.nt ation. Th. failure is in the functional forms

a~ se and hence is a failur e of the m.thodology itself.
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To the argument that the translog function is in tend ed as a good

approximation to sufficiently differentiabl , functions (which are otherwise

arbitrary) we now ettt.rt~~remarks as follows. First , as our simple example

shows, process analysis models will generally yield only piecewise differen-

tiable func tions. Second , a local second order approximation by a translog

function to a diffarentiabla function may be unsatisfactory even when

the latter is infinitely differentiable. ~‘ A simple example involving only

one variable is as follows

1nC a~~ + a101np1 + a11(lnp1)
2 

+ f(p1),

(1 ) where
0 , O~p1~l

~~p1
) - 

{,
_(P

1
_1)

_2 

~~~ , p1>1.

Thus , in the neighborhood of p1—l. inC is closely approximated by

a00 + a101np1 + a11(inp 1) 2 . A s p1 increases beyond 1, however , f(p1)

increases as the p
~ 
power of e and cannot possibly be overtaken by logarithmic

Such functional forms may be needed to reflect the effect of capacity

constraints on prices as limits on the underlying inputs are approached. (See

concluding remarks in the next section.) Evidently the translog approximations

could not be satisfactorily employed for this purpose.

In their original publication [7] Professors Christensen, Jorgenson and
Lsu assert that the tranaiog function provides a second order approximation
to an ~~~itrary~ functional form but their subsequen t usage makes it clear
that they are restricting themselves to differentiable functions with a
sufficient number of derivatives . See, e.g., [8].

VOth er limitations tha t may be present in the translog and other “flexible”
functional forms are ezaained in (23 and (173 . 



19

5. Conclusion

We have shown that constraint limitations (possibly present in implicit

form) that ought to be given explicit attention in empirical studies of energy

s policies are , in fact, impossible to obtain by Shephard—Samuelson transforms

- from the cost functions. Where production possibility sets are acutally lim-

ited above, even “flexible” functional forms such as the translog cannot ap—

~rn~4~..te the correct cost functiofl except locally in regions where the capa-

city limitations are not binding . In fact, attempts at goo i f i t s  in one of

these regions then necessarily results in poor ~~] t E  in others.

As exemplified by even the simpler Laplace transform discussed in Sec—

tic-n 2 , the t r ans f o rm of an approximating function may be far from the trans-

form of the exact func t ion . One should therefore always be aware of the possi—

bility of this kind of behavior when applying any transform method .

The Shephard—Samuelson “duality” theory is dependent on prices being inde—

pendent of volume and mix. This assumption is also not likely to be satisfied

in either short—range or long—range energy policy problems. It may be possible

to extend this theory to cover at least some cases in which prices are dependent

~~ volumes. If one can approximate capacity 1imita~ ons by extremely high prices for

~~oductionat or above these 1iznits , for example , then a resolution of the production

limitation diff icul t ies  mi ght also be secured in that impossible levels of pro—

duction migh t be signalled by “steeply rising” prices . These are important top-

ic. for research which would be of value in properly extending the important ad—

sauces that Griffin, Hudson—Jorgensen et al. have already effected for the model—

lug problems in areas such as energy policy. Until this research has progressed

• sufficiently far , however, it is important to bring these limitations very explic—

ttly to the fore in order to avoid possible pitfalls for many priority energy pol—

icy d cisions that are presently being considered by means of these methods from

mathematical economics with their accompanying (very strong) underlying assumptions.

— 
- -
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